

ADVANCED GCE MATHEMATICS Further Pure Mathematics 3

4727

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Wednesday 20 May 2009 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 Find the cube roots of $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, giving your answers in the form $\cos \theta + i \sin \theta$, where $0 \le \theta < 2\pi$. [4]
- 2 It is given that the set of complex numbers of the form $re^{i\theta}$ for $-\pi < \theta \le \pi$ and r > 0, under multiplication, forms a group.
 - (i) Write down the inverse of $5e^{\frac{1}{3}\pi i}$. [1]
 - (ii) Prove the closure property for the group. [2]
 - (iii) Z denotes the element $e^{i\gamma}$, where $\frac{1}{2}\pi < \gamma < \pi$. Express Z^2 in the form $e^{i\theta}$, where $-\pi < \theta < 0$. [2]
- 3 A line *l* has equation $\frac{x-6}{-4} = \frac{y+7}{8} = \frac{z+10}{7}$ and a plane *p* has equation 3x 4y 2z = 8.
 - (i) Find the point of intersection of *l* and *p*.
 - (ii) Find the equation of the plane which contains *l* and is perpendicular to *p*, giving your answer in the form ax + by + cz = d. [5]
- 4 The differential equation

$$\frac{dy}{dx} + \frac{1}{1 - x^2}y = (1 - x)^{\frac{1}{2}}, \text{ where } |x| < 1,$$

can be solved by the integrating factor method.

- (i) Use an appropriate result given in the List of Formulae (MF1) to show that the integrating factor can be written as $\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$. [2]
- (ii) Hence find the solution of the differential equation for which y = 2 when x = 0, giving your answer in the form y = f(x). [6]
- 5 The variables *x* and *y* satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 9y = \mathrm{e}^{3x}.$$

- (i) Find the complementary function.
- (ii) Explain briefly why there is no particular integral of either of the forms $y = ke^{3x}$ or $y = kxe^{3x}$.

[1]

[3]

[3]

(iii) Given that there is a particular integral of the form $y = kx^2 e^{3x}$, find the value of k. [5]

6 The plane
$$\Pi_1$$
 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix}$.

(i) Express the equation of Π_1 in the form $\mathbf{r.n} = p$.

The plane Π_2 has equation $\mathbf{r} \cdot \begin{pmatrix} 7\\17\\-3 \end{pmatrix} = 21.$

(ii) Find an equation of the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [5]

7 (i) Use de Moivre's theorem to prove that

$$\tan 3\theta = \frac{\tan \theta (3 - \tan^2 \theta)}{1 - 3\tan^2 \theta}.$$
 [4]

(ii) (a) By putting $\theta = \frac{1}{12}\pi$ in the identity in part (i), show that $\tan \frac{1}{12}\pi$ is a solution of the equation

$$t^3 - 3t^2 - 3t + 1 = 0.$$
 [1]

- (b) Hence show that $\tan \frac{1}{12}\pi = 2 \sqrt{3}$. [4]
- (iii) Use the substitution $t = \tan \theta$ to show that

$$\int_{0}^{2-\sqrt{3}} \frac{t(3-t^2)}{(1-3t^2)(1+t^2)} \, \mathrm{d}t = a \ln b,$$

where a and b are positive constants to be determined.

- 8 A multiplicative group Q of order 8 has elements $\{e, p, p^2, p^3, a, ap, ap^2, ap^3\}$, where e is the identity. The elements have the properties $p^4 = e$ and $a^2 = p^2 = (ap)^2$.
 - (i) Prove that a = pap and that p = apa. [2]
 - (ii) Find the order of each of the elements p^2 , a, ap, ap^2 . [5]
 - (iii) Prove that $\{e, a, p^2, ap^2\}$ is a subgroup of Q. [4]
 - (iv) Determine whether Q is a commutative group. [4]

3

[4]

[5]

4727 Further Pure Mathematics 3

1	$\left(\frac{1}{2}\sqrt{3} + \frac{1}{2}i\right)^{\frac{1}{3}} = \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^{\frac{1}{3}}$	B1	For arg $z = \frac{1}{6}\pi$ seen or implied
	$=\cos\frac{1}{18}\pi + i\sin\frac{1}{18}\pi$,	M1	For dividing $\arg z$ by 3
	$\cos\frac{13}{18}\pi + i\sin\frac{13}{18}\pi$,	A1	For any one correct root
	$\cos\frac{25}{18}\pi + i\sin\frac{25}{18}\pi$	A1 4	For 2 other roots and no more in range 0 ,, $\theta < 2\pi$
	10 10	4	
2 (i)	$\frac{1}{5}e^{-\frac{1}{3}\pi i}$	B1 1	For stating correct inverse in the form $r e^{i\theta}$
(ii)	$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$	M1 A1 2	For stating 2 distinct elements multiplied For showing product of correct form
(iii)	$Z^2 = e^{2i\gamma}$	B1	For $e^{2i\gamma}$ seen or implied
	$\Rightarrow e^{2i\gamma-2\pi i}$	B1 2	For correct answer. aef
		5	
3 (i)	$[6-4\lambda, -7+8\lambda, -10+7\lambda] \text{ on } p$ $\Rightarrow 3(6-4\lambda) - 4(-7+8\lambda) - 2(-10+7\lambda) = 8$	B1 M1	For point on l seen or implied For substituting into equation of p
	$\Rightarrow \lambda = 1 \Rightarrow (2, 1, -3)$	A1 3	For correct point. Allow position vector
(ii)	METHOD 1		
	$\mathbf{n} = [-4, 8, 7] \times [3, -4, -2]$	M1* M1	For direction of <i>l</i> and normal of <i>p</i> seen For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	$\mathbf{n} = k[12, 13, -8]$	(*dep) Al	For correct vector
	(2, 1, -3) OR (6, -7, -10)	M1	For finding scalar product of their point on <i>l</i> with their attempt at n , or equivalent
	$\Rightarrow 12x + 13y - 8z = 61$	A1 5	For correct equation, aef cartesian
	METHOD 2		
	$\mathbf{r} = [2, 1, -3] OR [6, -7, -10] + \lambda[-4, 8, 7] + \mu[3, -4, -2]$	M1 A1√	For stating eqtn of plane in parametric form (may be implied by next stage), using $[2, 1, -3]$ (ft from
			(i)) Or $[6, -7, -10]$, n ₁ and n ₂ (as above)
	$x = 2 - 4\lambda + 3\mu$	M1	For writing as 3 linear equations
	$y = 1 + 8\lambda - 4\mu$ $z = -3 + 7\lambda - 2\mu$	M1	For attempting to eliminate λ and μ
	$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
	METHOD 3		
	$3(6+3\mu) - 4(-7-4\mu) - 2(-10-2\mu) = 8$	M1	For finding foot of perpendicular from point on l to p
	$\Rightarrow \mu = -2 \Rightarrow (0, 1, -6)$	A1	For correct point or position vector
	From 3 points $(2, 1, -3)$, $(6, -7, -10)$, $(0, 1, -6)$,		
	n = vector product of 2 of $[2, 0, 3], [6, -8, -4], [-4, 8, 7]$	M1	Use vector product of 2 vectors in plane
	\Rightarrow n = k[12, 13, -8]		
	(2, 1, -3) OR (6, -7, -10)	M1	For finding scalar product of their point on <i>l</i> with their attempt at n , or equivalent
	$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
		8	

4	(i)	IF $e^{\int \frac{1}{1-x^2} dx} = e^{\frac{1}{2}\ln\frac{1+x}{1-x}} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$	M1 A1	2	For IF stated or implied. Allow $\pm \int$ and omission of dx For integration and simplification to AG (intermediate step must be seen)	
	(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\right) = (1+x)^{\frac{1}{2}}$	M1'	*	For multiplying both sides by IF	
		$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} = \frac{2}{3}\left(1+x\right)^{\frac{3}{2}} + c$	M1 A1		For integrating RHS to $k(1+x)^n$ For correct equation (including + <i>c</i>) In either order:	
		$(0,2) \Rightarrow 2 = \frac{2}{3} + c \Rightarrow c = \frac{4}{3}$	M1 (*de M1 (*de	17	For substituting $(0, 2)$ into their GS (including $+c$) For dividing solution through by IF, including dividing <i>c</i> or their numerical value for <i>c</i>	
		$y = \frac{2}{3}(1+x)(1-x)^{\frac{1}{2}} + \frac{4}{3}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$	A1		For correct solution aef (even unsimplified) in form $y = f(x)$	
8						
5	(i)	$m^2 - 6m + 9 \ (= 0) \Rightarrow m = 3$	M1 A1		For attempting to solve correct auxiliary equation For correct <i>m</i>	
		$CF = (A + Bx)e^{3x}$	A1	3	For correct CF	
	(ii)	ke^{3x} and kxe^{3x} both appear in CF	B1	1	For correct statement	
	(iii)	$y = kx^2 e^{3x} \implies y' = 2kxe^{3x} + 3kx^2 e^{3x}$	M1 A1		For differentiating kx^2e^{3x} twice For correct y' aef	
		$\Rightarrow y'' = 2ke^{3x} + 12kxe^{3x} + 9kx^2e^{3x}$	A1		For correct y'' aef	
		$\Rightarrow ke^{3x} \left(2 + 12x + 9x^2 - 12x - 18x^2 + 9x^2 \right) = e^{3x}$	M1		For substituting y'' , y' , y into DE	
		$\Rightarrow k = \frac{1}{2}$	A1		For correct <i>k</i>	
				-		

6 (i)	METHOD 1		
	$\mathbf{n}_1 = [1, 1, 0] \times [1, -5, -2]$	M1	For attempting to find vector product of the pair of direction vectors
	= [-2, 2, -6] = k[1, -1, 3]	A1	For correct \mathbf{n}_1
	Use (2, 2, 1)	M1	For substituting a point into equation
	$\Rightarrow \mathbf{r} \cdot [-2, 2, -6] = -6 \Rightarrow \mathbf{r} \cdot [1, -1, 3] = 3$	A1 4	For correct equation. aef in this form
	METHOD 2		
	$x = 2 + \lambda + \mu$	M1	For writing as 3 linear equations
	$y = 2 + \lambda - 5\mu$	M1	For attempting to eliminate λ and μ
	$z = 1$ -2μ	4.1	
	$\Rightarrow x - y + 3z = 3$	A1	For correct cartesian equation
(**)	$\Rightarrow \mathbf{r} \cdot [1, -1, 3] = 3$	A1	For correct equation. aef in this form
(ii)	For $\mathbf{r} = \mathbf{a} + t\mathbf{b}$		
	METHOD 1 $\mathbf{b} = [1, -1, 3] \times [7, 17, -3]$	M1	For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	= k[2, -1, -1]	A1√	For a correct vector. If from \mathbf{n}_1 in (i)
		1.41	• · · ·
	e.g. x, y or $z = 0$ in $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] \text{ OR } \left[3, 0, 0\right] \text{ OR } \left[1, 1, 1\right]$	A1 $$	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working
	Line is $(2, \alpha) = [1, 1, 1] + t[2, 1, 1]$	A1√ 5	For stating equation of line ft from a and b
	Line is (e.g.) $\mathbf{r} = [1, 1, 1] + t [2, -1, -1]$	111 + 0	SR for $\mathbf{a} = [2, 2, 1]$ stated award M0
	METHOD 2		
	Solve $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$		In either order:
		M1	For attempting to solve equations
	by eliminating one variable (e.g. z)		
	Use parameter for another variable (e.g. <i>x</i>) to find other variables in terms of <i>t</i>	M1	For attempting to find parametric solution
		A1√	For correct expression for one variable
	(eg) $y = \frac{3}{2} - \frac{1}{2}t$, $z = \frac{3}{2} - \frac{1}{2}t$	A1√	For correct expression for the other variable
			ft from equation in (i) for both
	Line is (eg) $\mathbf{r} = \left[0, \frac{3}{2}, \frac{3}{2}\right] + t \left[2, -1, -1\right]$	A1√	For stating equation of line. ft from parametric solutions
_	METHOD 3		
	eg x, y or z = 0 in $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \begin{bmatrix} 0, \frac{3}{2}, \frac{3}{2} \end{bmatrix} OR \begin{bmatrix} 3, 0, 0 \end{bmatrix} OR \begin{bmatrix} 1, 1, 1 \end{bmatrix}$	A1	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working SR for $\mathbf{a} = [2, 2, 1]$ stated award M0
	eg [3, 0, 0]-[1, 1, 1]	M1	For finding another point on the line and using it with the one already found to find b
	$\mathbf{b} = k[2, -1, -1]$	A1 $$	For a correct vector. ft from equation in (i)
	Line is (eg) $\mathbf{r} = [1, 1, 1] + t [2, -1, -1]$	A1√	For stating equation of line. ft from a and b

6 (ii) contd	METHOD 4			
	A point on Π_1 is	M1		For using parametric form for Π_1
	$[2+\lambda+\mu,2+\lambda-5\mu,l-2\mu]$	1011		and substituting into Π_2
	On $\Pi_2 \Rightarrow$			
	$[2+\lambda+\mu, 2+\lambda-5\mu, 1-2\mu] \cdot [7, 17, -3] = 21$	A1		For correct unsimplified equation
	$\Rightarrow \lambda - 3\mu = -1$	A1		For correct equation
	Line is (e.g.) $\mathbf{r} = [2, 2, 1] + (3\mu - 1)[1, 1, 0] + \mu[1, -5, -2]$	M1		For substituting into Π_1 for λ or μ
	$\Rightarrow \mathbf{r} = [1, 1, 1] or \left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right] + t [2, -1, -1]$	A1		For stating equation of line
		9		
7 (i)	$\cos 3\theta + \mathrm{i}\sin 3\theta = c^3 + 3\mathrm{i}c^2s - 3cs^2 - \mathrm{i}s^3$	M1		For using de Moivre with $n = 3$
	$\Rightarrow \cos 3\theta = c^3 - 3cs^2$ and	A1		For both expressions in this form (seen or implied
	$\sin 3\theta = 3c^2s - s^3$			SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3\theta = \frac{3c^2s - s^3}{c^3 - 3cs^2}$	M1		For expressing $\frac{\sin 3\theta}{\cos 3\theta}$ in terms of <i>c</i> and <i>s</i>
	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{\tan\theta(3 - \tan^2\theta)}{1 - 3\tan^2\theta}$	A1	4	For simplifying to AG
(ii) (a)	$\theta = \frac{1}{12}\pi \Longrightarrow \tan 3\theta = 1$			
	$\Rightarrow 1 - 3t^2 = t(3 - t^2) \Rightarrow$	B1	1	For both stages correct AG
	$t^{3} - 3t^{2} - 3t + 1 = 0$	21	-	
(b)	$\frac{t^2 - 3t^2 - 3t + 1 = 0}{(t+1)(t^2 - 4t + 1) = 0}$	M1		For attempt to factorise cubic
	(t+1)(t - 4t + 1) = 0	A1		For correct factors
	\Rightarrow $(t = -1), t = 2 \pm \sqrt{3}$	A1		For correct roots of quadratic
	$-$ sign for smaller root \Rightarrow	A1	4	For choice of – sign and correct root AG
	$\tan\frac{1}{12}\pi = 2 - \sqrt{3}$			-
(iii)	$\mathrm{d}t = (1+t^2) \mathrm{d}\theta$	B1		For differentiation of substitution and use of $\sec^2 \theta = 1 + \tan^2 \theta$
	$\Rightarrow \int_0^{\frac{1}{12}\pi} \tan 3\theta \mathrm{d}\theta$	B1		For integral with correct θ limits seen
	$= \left[\frac{1}{3}\ln\left(\sec 3\theta\right)\right]_{0}^{\frac{1}{12}\pi} = \frac{1}{3}\ln\left(\sec \frac{1}{4}\pi\right)$	M1		For integrating to $k \ln(\sec 3\theta)$ OR $k \ln(\cos 3\theta)$
		M1		For substituting limits
	$=\frac{1}{3}\ln\sqrt{2}=\frac{1}{6}\ln 2$			and $\sec \frac{1}{4}\pi = \sqrt{2}$ OR $\cos \frac{1}{4}\pi = \frac{1}{\sqrt{2}}$ seen
		A1	5	For correct answer aef
		14	1	

Mark Scheme

8 (i)	$a^2 = (ap)^2 = apap \implies a = pap$	B1		For use of given properties to obtain AG
	$p^2 = (ap)^2 = apap \implies p = apa$	B1	2	For use of given properties to obtain AG SR allow working from AG to obtain relevant properties
(ii)	$\left(p^2\right)^2 = p^4 = e \implies \text{order } p^2 = 2$	B1		For correct order with no incorrect working seen
	$(a^2)^2 = (p^2)^2 = e \implies \text{order } a = 4$	B1		For correct order with no incorrect working seen
	$(ap)^4 = a^4 = e \implies \text{order } ap = 4$	B1		For correct order with no incorrect working seen
	$\left(ap^2\right)^2 = ap^2ap^2 = ap \cdot a \cdot p = a^2$	M1		For relevant use of (i) or given properties
	$OR \ ap^{2} = a . a^{2} = a^{3} \Rightarrow$ $\left(ap^{2}\right)^{2} = a^{6} = a^{2}$	A1	5	For correct order with no incorrect working seen
	\Rightarrow order $ap^2 = 4$			
(iii)	METHOD 1 $p^2 = a^2$, $ap^2 = a^3$	M2		For use of the given properties to simplify p^2 and ap^2
	$\Rightarrow \{e, a, p^2, ap^2\} = \{e, a, a^2, a^3\}$	A1		For obtaining a^2 and a^3
	which is a cyclic group	A1	4	For justifying that the set is a group
	METHOD 2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Completed table is a cyclic group	B2		For justifying that the set is a group
	METHOD 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Identity = e	B1		For stating identity
	Inverses exist since EITHER: e is in each row/column OR: p^2 is self-inverse; a, ap^2 form an inverse pair	B1		For justifying inverses ($e^{-1} = e$ may be assumed)

(iv)	METHOD 1	M1	For attempting to find a non-commutative pair of
	e.g. $a \cdot ap = a^2 p = p^3$ \Rightarrow not $ap \cdot a = p$		elements, at least one involving <i>a</i>
		M1	(may be embedded in a full or partial table) For simplifying elements both ways round
	commutative	B1	For a correct pair of non-commutative elements
		A1 4	For stating Q non-commutative, with a clear argument
	METHOD 2		
	Assume commutativity, so (eg) $ap = pa$	M1	For setting up proof by contradiction
	(i) \Rightarrow		
	$p = ap.a \Rightarrow p = pa.a = pa^2 = pp^2 = p^3$	M1	For using (i) and/or given properties
	But <i>p</i> and p^3 are distinct	B1	For obtaining and stating a contradiction
	$\Rightarrow Q$ is non-commutative	A1	For stating Q non-commutative, with a clear argument
		15	